中国大型对撞机多少吨
1. 粒子对撞机造价近千亿,高能物理研究为何如此烧钱我们造不造
中国建不建粒子对撞机?
粒子对撞机主要作用是加速两股粒子流,使其以接近光速进行对撞,粒子在高能状态下对撞分裂产生人类未知的物质形态,从而研究宇宙万物的本源,该装置可以进行基本粒子如质子、电子等对撞实验;
粒子对撞机为了获得超高速粒子流,通常采用环形超级磁场来加速粒子,要达到接近光速,环形磁场必须长达数百公里才能使粒子加速到实验需求的速度;
粒子对撞机环形磁场的高强电流产生的磁场势必对周围环境造成影响,影响人类的正常生活环境,因此为了避免造成环境破坏,环形磁场必须建在地下数百米深度,这就导致工程浩大,建造费用极其昂贵;
欧洲粒子对撞机建成后,在对撞实验中发现了“上帝粒子”希格斯子,最近报道又发现了两种新的粒子,由此可见对撞机也仅仅是高能物理研究的一个实验装置;
至于中国是否要建粒子对撞机,必须要经过全面论证,首先国内是否有顶级物理学家能完成相关实验、并在量子物理领域有所建树,其二对撞实验能否为国民经济发展助力、能否开发对环境影响小新能源,其三建造工程是否可以带动相关领域技术进步、使中国在航空、材料等领域突飞猛进,其四中国是否已经有足够的闲钱用于对撞机的奢侈消费?
综上所述,粒子对撞机对未来科学发展的贡献值得商榷,如果中国在天体物理、量子物理领域有大量的世界顶级科学成果,建对撞机有必要,如果缺乏相关科研人员,岂不是为他人做嫁衣?
我平时看问题的直观判断灵验率很高,认为此时间节点不宜花千亿人民币去建超级强子对撞机工程,建议我国把它延后些去办。当前要用这么多经费去搞前沿性的一些可应用的技术工程,如研究利用中微子去传输信息。把已知的中微子应用到实践中去,比把未发现的新粒子去应用要相对容易些。
既使我国在十五年内发现了诺奖级的新粒子,也不见得能在二十年内能把它应用到广泛实用性的信息领域去,有什么比先进的信息技术、生物工程和智能重要呢?不会闹笑话把末来可能会发现比希格斯玻色子更微观的粒子留着应用到机械领域去吧!科学家的思想和建义可不要太机械了哦!
可以预想到的是,美国和欧州人在未来十年内不会投入更多的钱到强子对撞机试验中去,在这方面他们的心血将越来越变凉,也很清楚发现更微观的粒子代价越来越高。或许获得过诺奖的杨院士全面考虑过这些问题,而有些国内学者一心想寻求自身专业 探索 的快感。
虽然研究新粒子是去了解微观问题,但要作出宏观规划方面的考虑!慎重、慎重、千万要慎重!
就在11月3日上午主张建造环形电子对撞机的高能所所长、中科院院士王贻芳接受多家媒体采访,被提问最多的问题还是关于我国要建造的环形电子对撞机。
那么为什么主张建造这个对撞机哪?
高能物理要想发展,并且走在前沿就绕不过粒子物理标准模型,这个模型包含了61种基本粒子,其中包括了三大基本作用力的传播子以及组成物质的基本粒子,其中还有一种粒子比较特殊,那就是希格斯粒子,这个粒子又被称为上帝粒子。
希格斯粒子1964年被提出,2012年欧洲核子中心宣布大型强子对撞机(LHC)发现了希格斯粒子。这种粒子从被提出到发现花费了将近50年的时间,至此粒子物理标准模型的最后一块“拼图”被找到。接下来的工作就是要研究希格斯粒子的性质,这对于该领域的科研专家来说是一块大蛋糕,很可能会诞生两到三个诺奖。那么既然要研究希格斯粒子的性质,那么首先就要撞出大量的希格斯粒子,我国可能建造的环形正负电子对撞机一期完成后运行后可以得到至少100万个希格斯粒子。
为什么有人反对建造环形正负电子对撞机哪?
反对人中的代表就是杨振宁,杨老认为建造环形正负电子对撞机资金投入太过于巨大,和我国正在发展的国情不匹配,也会给其它基础科学的经费投入造成影响。并且我国目前在该领域内的专家数量远远不够,即使建造成功后也会需要大量其它国家的科研人员,为他人作嫁衣。
在昨天上午王院士的采访新闻中,他特意强调了一件事情,那就是环形正负电子对撞机的资金投入问题并不是像网上所说消耗数千亿,经过多次估算资金需求大约是360亿人民币。如果在一期运行后取得很好的成就,还可以把电子对撞机变成质子对撞机,继续进行研究,当然这360亿元中不包含后期的投入。
关于环形正负电子对撞机是否建造,并没有谁对谁错的问题,至少现在是看不出来的。即使现在开始建造完成一期工程也要到2030年,之后花费十年的时间运行取数据,二期工程将在2040年开始,至少要在四五十年后才能去评论建造环形正负电子对撞机的正确与否。
粒子对撞机(CEPC)到底造不造,已经争论了几年了。支持一方是中国科学院高能物理所所长、中国科学院院士王贻芳教授、反对现在造对撞机一方是杨振宁先生。双方都曾公开发表过意见与看法,但是从理由上,杨先生的意见更为的中肯一些。
不是不造对撞机,也不是造对撞机没用,杨先生的看法是不支持现在造对撞机,因为耗费巨大,并且每年也需要大量的经费。譬如欧洲的LHC,前前后后6000余名物理学家与研究学者在那里工作过,每年需要一大笔钱来做研究经费,LHC最大的成果就是2013年发现了希格斯粒子。当初美国也曾想在上世纪九十年代建造一个当时世界上最大的对撞机SSC,但后来由于某些原因撤销了这个计划,原本已经在建造的SSC被迫停止,30亿美元打了水漂,虽然美国没有建成大型粒子对撞机,但是人家的基础科学研究丝毫不弱于欧洲。
建造粒子对撞机不仅是建造费用,还有后续的经费支出、维护维修、升级费用等等,这些加起来确实不是一个小数目,这也是杨先生反对的原因之一。
造不造不是我们能说的算的,造了确实有好处,可以吸引很多的学者、物理学家前来研究,也有助于我国培养相关人才,更有可能发现新的物理现象,提出新的物理问题。不造也有理由,不是不造,是不在现在造。
理论物理学家废纸,实验物理学家费电,然而理论最终都需要实验来证明其正确性,高能物理的理论就是严重依赖实验的典型,当物理学家们预言一种新的粒子之后,造价上千亿的对撞机就要开始漫长的验证之路。
“上帝粒子”从上个世纪下半叶被预测存在后,一直到2013年才被造价60亿美元的欧洲大型强子对撞机所发现,并且这个发现只是证明了上个世纪某些高能物理理论的正确性,对于目前的人类文明来说没有一点实质性的好处。
物理学注定就是一个烧钱的学科,高能物理的目的之一就是研究微观粒子,而微观粒子只能通过对撞机来产生,并且随着理论的升级现有的对撞机功率是不足以验证已经升级了的理论的正确性的,唯一的办法就是花更多的钱造更强大的对撞机验证更先进的理论。
欧洲目前已经准备再建造一个210亿欧元的对撞机来做高能物理,而中国的王贻芳院士支持建造的大型对撞机将耗资1300亿人民币币,这还不算建成后的维护费。
从长远来看大型对撞机会肯定是要制造的,但前提是我们有这些“闲钱”去建造它,其实杨振宁建议的是中国在三五十年后再建造大型对撞机,因为那时候肯定比现在国强民富。
某种意义上来说物理学家就是地球上最开心的人,虽然他们动动嘴就能让国家花费上千亿建造大型对撞机,但是 历史 已经证明一个国家如果不注重科学技术就是要挨打的,所以也只能“痛并快乐着”
不造
其实根本不是造的问题,有钱当然要造。问题是,我们是不是得花那么多造。
为啥造价昂贵?
其实我们平时买机械产品,都会有一个精度的说法,尤其是精度越高,造价就越贵。而我们知道,高能物理的研究是在亚原子级别的,电子和质子的尺度都在10的15次方上下,而要控制它们往一个方向上迎头撞到一起,这个技术难度不是一般的高。整个操作要比市面上几乎绝大多数的仪器的误差还要小得多,所以仅仅从这一点上看,它就不会便宜。
其次,它的耗电量运营成本维护成本也搞得离谱,毕竟是要在这么小的尺度内实现操作。这后期的投入都不会小。
目前最有名气的对撞机是LHC,全场27KM。它的造价折合人民币就过了千亿。
成本和收益的考虑
其实要不要造这个问题,如果仅从学术研究的角度考虑,那是一定要造的,因为它一定会对基础物理的研究有帮助的作用。
但是很多事情并不是说,有必要就一定要造。因为这也要考量成本和收益的。对撞机其实就是一种成本相当高,但是收益未可知的项目。很多国家其实都是看哪个项目最有可能有可观的成果才做哪个的。
而我们国家在引力波,黑洞,量子通信,暗物质,暗能量方面的投入都过了千亿。如果还在这方面继续投入的话,某种程度是没啥问题,但确实会增加很多科研经费。
而杨振宁觉得,高能物理如果还是用对撞机,不仅效益不大,而且费钱费力,如果把这些钱都投入到其他更需要钱更能出成果的领域,那岂不是更好?
当然不造。花钱多而且大概率要大比例超支还是第二位的问题,第一位的问题是:这东西有啥用啊?
说是支持高能粒子研究,问题是,高能粒子研究已经几十年没有能够影响人类生活支持应用学科发展的成果了。就拿王院士要花几千亿“进一步测量”的“希格斯粒子”来说,这东东2012年发现,也是号称多么伟大多么超级的成果的。对这些高大上我们完全无异议,我们关心的是:这东西发现至今也若干年了,别说有什么实用价值了,有谁能搞清楚这东西可能对应用学科对人类生活产生什么影响吗?
搞工程的都知道,成本和收益是可行性研究最根本的两个问题。如今对撞机的成本明摆着极其高昂,而且大概率要大比例超支;收益方面更糟糕,根本没有什么明确的新目标,压根是“撞了再说”。唯一能提出来的是对希格斯粒子之类“进一步测量”,可是这些要花海量资源“进一步测量”的对象,是几十上百年里没人能搞清楚有什么用的玩意。
成本高昂,超支风险极大,收益却连一个基本的方向甚至思路都没有,这种东西,别说项目审批是否能通过了,连审批流程都不可能进入才对。搞工程的人谁要是敢提交这么一份申请,信不信立项委员会的人能直接把申请掼你脸上?
对撞机是一种粒子加速器,可以将正反粒子加速到很高的能量然后让正反粒子迎头相撞。大型粒子对撞机是高能物理实验的最强有力设备,同时也被很多人视为烧钱的无底洞。不仅建造对撞机需要大量的资金,后期的使用及维护也要消耗大量资金,并且对更高能量的追求是粒子物理学家的不懈努力。
电子、质子的尺寸很小,目前实验测量到的它们直径的上限要小于十的负15次方米,要让这样小的粒子迎头相撞,必须将它们限制在很窄的范围内运动。目前世界最大对撞机欧洲大型强子对撞机LHC是设计成环形的,其周长达到了27千米,里面接近光速运动的正反质子流,宽度是在纳米(十的负9次方米)的数量级。仅凭这一点就可以感受到其需要有多么高超的技术,这背后当然也需要有资金去进行技术支撑。
环形对撞机的优势是可以通过改变磁场及电场的强度让粒子在固定的环内多次加速,磁场越强、环的半径越大就越能够将粒子加速到更高的能量。为了获得更强的磁场,需要将一些材料冷却到零下二百余摄氏度,以期用通电后的超导体产生强大的磁场。另外,对撞机的环内还需要保持高真空,还需要对海量的数据进行记录。等等严格要求使得对撞机是一个耗电大户,欧洲大型强子对撞机运行起来耗电功率能够达到200兆瓦。
更可怕的是,粒子物理学家对更高能量对撞机的追求似乎是没有止境的,他们不满足于欧洲大型强子对撞机的能量,还要建造周长达到100千米的超大型对撞机。这台对撞机若是真的建成了,后期维护及使用也是一笔巨大的开支。
对撞机对人类认识物质世界的基本组成发挥过关键的作用,在上帝粒子希格斯粒子被发现后,粒子物理的标准模型取得了巨大的成功。虽然关于希格斯粒子还有很多工作需要去做,不过和之前比起来,高能物理的确是遇到了瓶颈期。一些理论预言的存在与粒子相对应的超对称粒子,并且希望用对撞机发现这样的粒子。可事实上,在大型强子对撞机的实验中根本没有发现过超对称粒子存在的痕迹,几乎宣判了超对称粒子的死刑,这让支持超对称理论的物理学家甚是失望。至于还要不要建造超大型对撞机,支持和反对的还在争论着,我等保持观望即可。
物质是金属态氢离子聚合形成的。
高能粒子对撞机没有正确的物理理论指导,是“盲人摸象”!
2. 粒子对撞机造价近千亿,这样烧钱的设备我们该不该造
粒子对撞机造价近千亿,这样烧钱的设备我们该不该造?
理论物理学家废旧纸张,实验物理学家耗电,殊不知理论最后都必须 试验来证实其准确性,高能物理的理论便是比较严重依靠试验的典型性,当物理学家们推测一种新的颗粒以后,工程造价几亿元的对撞机就需要逐渐悠长的认证之途。
某种程度上而言物理学家便是地球上最开心的人,尽管她们动动口就能让我国耗费几亿元建造大型对撞机,可是历史时间早已证实一个国家如果不重视科技进步便是要挨揍的,因此也只有“痛并快乐着”
以上就是我的详细介绍,希望看完对大家有所帮助。大家还有别的意见,可以在下方留言区一起讨论。
3. 中国什么时候建世界上最大的电子对撞机
希望在2035年前努力实现一个较近期的目标
对中国来说,这个对撞机将是一大飞跃。中国目前最大对撞机的周长仅为240米。
不过,中国要在对撞机领域占据支配地位还有很长的路要走。欧洲核子研究中心的粒子物理学家吉多·托内利说,中国的主要弱点在于,高能物理学界的规模较小。如果中国想最终主办一个超级对撞机项目,那么肯定是一个国际项目,因为“没人能单独完成这项工作”。
4. 王贻芳:对撞机必须要建!花360亿怎么了
科学,细心地玩味起来,并不是别的,而是正确的判断力和理解力。——斯坦尼斯瓦夫
科学作为一个国家的软实力,在发展中起着举足轻重的作用,回望中国的崛起之路,在背后支撑的是日渐强大起来的科技实力。所谓,科学界的一小步,就是国家的一大步。
稳中求进反对建造
科学界是一个充满励志、智慧和知识的领域,不仅需要丰富的专业知识,实践经验也十分重要。那些在科学界有着一席之地的科学家们更是拥有着敏锐的眼光和严谨的科学态度,对于某件事情也有自己看法和见解。因此在科学界,围绕一项重大科学决策争得面红耳赤是再正常不过的。
在未来,若我国的大型对撞机研究出了成果,则意味着中国科技将有机会领先西方,但是即使如此,恐怕也只是停留在基础理论阶段,并非实用技术。而一旦失败,损失财力物力之外,各个合作国一拍而散,恐怕最后只落得中国为这巨大的失败背锅。
所以,决定国家命运的核心技术并不简单地靠砸钱就可以,这个所谓的机遇是否真的应该及时付诸行动,需要十分周全的考虑和验证,结果如何还有待科学界最终的商榷。
5. 大型强子对撞机有多大
它的周长有17英里(约27.3千米)。
大型强子对撞机(Large Hadron Collider)确实很庞大,它的周长有17英里(约27.3千米),是这个星球上最大的对撞机。但是它名字后部分有一定的误导性。这是因为在LHC中对撞的只是强子内部很小的部分,而不是强子本身。
强子是由夸克和胶子组成的复合粒子。其中胶子传递着强相互作用力,让夸克紧紧地粘在一起,形成单个粒子。LHC中最主要的对撞粒子是被称为质子的强子。质子由三个夸克和难以计数的胶子组成。(质子又进一步组成原子,而原子构成世界万物)
如果把一个质子放大到篮球那么大,它看起来会显得空荡荡。和原子一样,质子也几乎完全是空的。质子中的单个夸克和胶子是非常小的,只有不到整个质子直径的万分之一。
6. 中国花360亿建造的大型对撞机有什么用处
2000多年前,希腊人就开始思考这些问题了。对于空间,对于物质,他们有很多想法——虽然,这些想法可能跟现在的科学理解不太一样,但事实上,2000多年前他们能提出这些思想,是非常了不起的,表示当时他们的文明达到了非常高的程度。
所以我们需要一台能产生足够量Higgs粒子的新机器,使测量能够达到1%的精度,从而摸到上限、把新物理给找出来。同时这个加速器会是世界上能量最高、通量最大的同步辐射光源,所以它的用处非常广泛。
7. 建造大型强子对撞机有什么用杨振宁等科学家为何反对我国建造
提起大型强子对撞机,大家想起的可能是撞出黑洞,有人想起的可能是希格斯玻色子。对撞机撞出黑洞是来自于人们对黑洞这种奇异天体的恐慌,而撞出希格斯玻色子则是欧洲大型强子对撞机(LHC)最辉煌的实验成就。
你赞成我国建造对撞机吗?
从网上科学兴趣群里了解到,绝大多数非高能物理专业的科学爱好者都是支持杨振宁的,那么你认为我国该建不该建?
(以上图片来源自网络,如有侵权请联系删除
8. 粒子对撞机造价近千亿,高能物理研究如此烧钱,我们还要不要造
世界上任何一个国家的尖端科研领域,都面临一个非常棘手的问题,那就是这些领域动辄都需要天文数字的资金投入,就拿生物科研来说,一种新型药物的研发往往需要投入几十亿甚至上百亿的前期经费,因此市面上才会出现很多为人诟病的“高价药”。高昂的研发费用和后期的利润回收成为科学和应用的剧烈冲突点,因此很多尖端科技的市场应用和核心技术往往都掌握在经济发达的国家手中,据统计,全世界能够独立投入资金进行尖端科学研究的,只有不到十五国家,而我们今天要给大家介绍的这个“恐怖巨兽”,至今没有任何一个国家能够独立完成,它就是大型粒子对撞机。
诗韵说:虽然反对派中有杨振宁教授这样全球闻名的物理大师,但是支持建造的阵营中也有李政道、丘成桐这样的科学巨咖,正是因为这些人类顶级头脑的激烈交锋,加上千亿人民币的资金消耗,才让这个科研项目显得格外不同,网络上对此也出现很多不同的声音,全民讨论的高潮一波接着一波,而大型粒子对撞机除了自己担负的科研使命,是否能为中国科研挽回失去的“真心”,才是它最重要的任务。
9. 世界上最高的对撞机是哪个国家的
世界上能量最高的对撞机是欧洲大型强子对撞机。大型强子对撞机是粒子物理科学家为了探索新的粒子,和微观量化粒子的‘新物理’机制设备,是一种将质子加速对撞的高能物理设备,英文名称为LHC(Large Hadron Collider)。欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器。大型强子对撞机坐落于日内瓦附近瑞士和法国的交界侏罗山地下100米深·总长17英里(含环形隧道)的隧道内。2008年9月10日,对撞机初次启动进行测试。
过程及目的
建造过程和探索微观粒子的目的
大型强子对撞器,英文名称为LHC(Large Hadron Collider)是一座位于瑞士日内瓦近郊欧洲核子研究组织CERN的粒子加速器与对撞机,作为国际高能物理学研究之用。地理坐标为北纬46°14′00″,东经6°03′00″46.23;6.05,LHC已经建造完成。
大型强子对撞机将是世界上最大、能量最高的粒子加速器,来自大约80个国家的7000名科学家和工程师。由40个国家建造。是一种将质子加速对撞的高能物理设备。它是一个圆形加速器,深埋于地下100米,它的环状隧道有27公里长,坐落于在瑞士日内瓦的欧洲核子研究中心(又名欧洲粒子物理实验室),横跨法国和瑞士的边境。
为了节省成本,物理学家们没有开凿一条昂贵的新隧道来容纳新的对撞机,而是决定拆掉原来安置在欧洲原子核研究中心的正负电子加速器,代之以建造大型强子对撞机所需要的5万吨设备。当两个质子束在环形隧道中沿着反方向运动的时候,强大的电场使它们的能量急剧增加。这些粒子每运行一圈,就会获得更多的能量。要保持如此高能量的质子束继续运行需要非常强大的磁场。这么强的磁场是由冷却到接近绝对零度的超导电磁体产生的。物理学家们最希望建造的是一个30公里长的机器,它能以至少5千亿电子伏的能量将电子和正电子一起粉碎。目前;对撞机已经发现了‘希格斯粒子希格斯玻色子的存在,升级后发现‘夸克奇异重子’五种夸克的‘味变’集合体存在,改造升级能量的加大还会‘探索发现’超对称粒子和希格斯耦合粒子与粒子的额外维相存在。
设备结构
LHC是一个国际合作的计划,由34个国家超过两千位物理学家所属的大学与实验室所共同出资合作兴建的。
LHC包含了一个圆周为27公里的圆形隧道,因当地地形的缘故位于地下50至150米之间。这是先前大型电子正子加速器(LEP)所使用隧道的再利用,隧道本身直径三米,位于同一平面上,并贯穿瑞士与法国边境,主要的部分大半位于法国。虽然隧道本身位于地底下,尚有许多地面设施如冷却压缩机,通风设备,控制电机设备,还有冷冻槽等等建构于其上。
加速器通道中,主要是放置两个质子束管。加速管由超导磁铁所包覆,以液态氦来冷却。管中的质子是以相反的方向,环绕着整个环型加速器运行。除此之外,在四个实验碰撞点附近,另有安装其他的偏向磁铁及聚焦磁铁。
在粒子入射到主加速环之前,会先经过一系列加速设施,逐级提升能量。其中,由两个直线加速器所构成的质子同步加速器(PS)将产生50 MeV的能量,接着质子同步推进器(PSB)提升能量到1.4GeV。而质子同步加速环可达到26 GeV的能量。低能量入射环(LEIR)为一离子储存与冷却的装置。反物质减速器(AD)可以将3.57 GeV的反质子,减速到2 GeV。最后超级质子同步加速器(SPS)可提升质子的能量到450 GeV。
LHC也可以用来加速对撞重离子,例如铅(Pb)离子可加速到1150 TeV。由于LHC有着对工程技术上极端的挑战,安全上的确保是极其重要的。当LHC开始运作时,磁铁中的总能量高达100亿焦耳(GJ),而粒子束中的总能量也高达725百万焦耳(MJ)。只需要10?7总粒子能量便可以使超导磁铁脱离超导态,而丢弃全部的加速粒子可相当于一个小型的爆炸。
10. 中国为何不建大型强子对撞机
中国为何不建造大型强子对撞机呢?着名华裔物理学家杨振宁教授曾经给出过“没有必要”的答案。因为杨振宁教授认为高能物理学的辉煌时期已经到达了顶端,马上就要过去了。而且建造大型强子对撞机需要很多的资金,还不如投放在其他的更有必要的科学领域,创造更大的价值,
中国是泱泱大国,如若建造,必定是最大规模。然而许多专家都表示,大型强子对撞机并不会带来直接的经济利益,它的主要价值是在粒子领域进行研究,这对当前的中国来说是没有必要的。如此大量的资金,不如投资在更继续改善的设备建造上。所以几经商讨,还是放弃了这个建造大型强子对撞机的计划。