土壤容重标准差是多少
① 什么是土壤容重容重有什么重要性
土壤容重亦称“土壤假比重”,是一定容积的土壤包括土粒及粒间的孔隙烘干后的重量与同容积水重的比值。土壤容重的重要性:土壤的容重大小表明土壤的密实程度,容重越大,密实程度越大,容重还与土质有关系.土壤容重可以反映土壤的土质情况。
一般含矿物质多而结构差的土壤如砂土,土壤容积比重在1.4至1.7之间;含有机质多而结构好的土壤如农业土壤,在1.1至1.4之间。土壤容积比重可用来计算一定面积耕层土壤的重量和土壤孔隙度;也可作为土壤熟化程度指标之一,熟化程度较高的土壤,容积比重常较小。
测定方法
测定土壤容重的方法有环刀法、蜡封法、水银排开法、填砂法和γ射线法、挖坑法等。
环刀法适用一般土壤,对坚硬和易碎土壤不适用,因为这些土壤最易于在环刀切样时扰动土的原状结构。为此提出一些补充测试方法,但也不都是令人满意,如蜡封法、水银排开法主要测定一些呈不规则形状的坚硬和易碎土壤的容重,但工效甚低,测试结果也极不稳定;水银排开法因水银蒸气有害人体健康较少采用。
填砂法比较复杂费时,常用于石质土壤,大量测定一般不采用此法。Y射线法需要特殊仪器和防护设施,不易广泛使用。挖坑法适用于根系或砾石含量较多、难以使用环刀取土的土壤。
② 土壤质量评价的评价指标
土壤质量是土壤的许多物理、化学和生物学性质,以及形成这些性质的一些重要过程的综合
体现,土壤质量指标则是土壤属性的外在量度,由于对各种土壤属性与功能之间的关系,以及形成各种土壤属性的过程机理等问题尚未十分明确,土壤质量评价体系仍无明确标准,土壤质量的研究仍然只是从不同关心角度进行的尝试。目前国内外科学家采用的评价土壤质量的指标体系不尽一致,可根据不同的土壤和不同的评价目的,选择不同的评价指标体系。大致可分为两类,一类是描述性指标,即定性指标,而不是定量化指标,因此被视为“软”数据。如土壤颜色、质地、紧实性、耕性、侵蚀状况、作物长势、保肥性等,农民往往通过这些描述性指标定性认识土壤质量状况,但科学家和技术人员不太重视这些指标。另一类是分析性定量指标,选择土壤的各种属性,进行定量分析,获取分析数据,然后确定数据指标的阀值和最适值。
1.根据分析性指标的性质,土壤质量的评价指标分为土壤物理指标、土壤化学指标、土壤生物学指标三方面。
(1)土壤质量的物理指标
土壤物理状况对植物生长和环境质量有直接或间接的影响。土壤物理指标包括土壤质地及粒径分布、土层厚度与根系深度、土壤容重和紧实度、孔隙度及孔隙分布、土壤结构、土壤含水量、田间持水量、土壤持水特征、渗透率和导水率、土壤排水性、土壤通气、土壤温度、障碍层次深度、土壤侵蚀状况、氧扩散率、土壤耕性等。
(2)土壤质量的化学指标
土壤中各种养分和土壤污染物质等的存在形态和浓度,直接影响植物生长和动物及人类健康。土壤质量的化学指标包括土壤有机碳和全氮、矿化氮、磷和钾的全量和有效量、CEC、土壤pH、电导率(全盐量)、盐基饱和度、碱化度、各种污染物存在形态和浓度等。
(3)土壤质量的生物学指标
土壤生物是土壤中具有生命力的主要部分,是各种生物体的总称,包括土壤微生物、土壤动物和植物,是评价土壤质量和健康状况的重要指标之一。土壤中许多生物可以改善土壤质量状况,也有一些生物如线虫、病原菌等会降低土壤质量。应用较多的指标是土壤微生物指标,而中型和大型土壤动物指标正在研究阶段。土壤质量的生物学指标包括微生物生物量碳和氮,潜在可矿化氮、总生物量、土壤呼吸量、微生物种类与数量、生物量碳/有机总碳、呼吸量/生物量、酶活性、微生物群落指纹、根系分泌物、作物残茬、根结线虫等。
2.根据土壤质量评价指标的选择原则,土壤质量的评价指标分为农艺指标、微生物指标、碳氮指标和生态学指标。
(1)土壤质量评价的农艺指标
对土壤做出适宜性评价,直接与农业的可持续性相关联,需选择与土壤生产力和农艺性状直接有关的参数指标。吴启堂等(1995)选用了10个参数指标,即①质地,②耕层厚度,③pH,④有机质,⑤全氮,⑥碱解氮,⑦速效磷,⑧速效钾,⑨容重,④CEC。对这些参数项目进行分级赋值,可以得到定量评价值,这种以农艺基础性状为主的土壤质量评价对于农林业生产具有指导意义。
(2)土壤质量的微生物学指标
土壤微生物是维持土壤质量的重要组成部分,它们对施人土壤的植物残体和土壤有机质及其它有害化合物的分解、生物化学循环和土壤结构的形成过程起调节作用。土壤生物学性质能敏感地反映土壤质量的变化,是评价土壤质量不可缺少的指标。但由于土壤生物学方面的指标繁多,加上测定方面的难度,下面的指标可供选择。
①土壤微生物的群落组成和多样性:土壤微生物十分复杂,地球上存在的微生物约有18万种之多,其中包含藻类、细菌、病毒、真菌等,1g土壤就含有10000多个不同的生物种。土壤微生物的多样性,能敏感地反映出自然景观及其土壤生态系统受人为干扰(破坏)或生态重建过程中的微细的变化及程度。因而是一个评价土壤质量的良好指标。
②土壤微生物生物量:微生物生物量(microbialbiomass,MB)能代表参与调控土壤能量和养分循环以及有机物质转化相对应微生物的数量。它与土壤有机质含量密切相关,而且微生物量碳或微生物量氮转化迅速。因此,微生物量碳或微生物量氮对不同耕作方式、长期和短期施肥管理都很敏感。
③土壤微生物活性:土壤微生物活性表示土壤中整个微生物群落或其中的一些特殊种群状态,可以反映自然或农田生态系统的微小变化。
④土壤酶活性:土壤酶绝大多数来自土壤微生物,在土壤中已发现50-60种酶,它们参与并催化土壤中发生的一系列复杂的生物化学反应。如水解酶和转化酶对土壤有机质的形成和养分循环具有重要的作用。已有研究表明,土壤酶活性和土壤结构参数有很好的相关性。它可作为反映人为管理措施和环境因子引起的土壤生物学和生物化学变化的指标。
高质量的土壤应具有稳定的微生物群落的组成、生物多样性及良好的生物活性。土壤徽生物是表征土壤质量最有潜力的敏感性指标之一。因此,建立土壤质量的微生物学指标受到科学家的重视。美国土壤微生物学家(Kemedy等,1995)根据可接受的测定项目和方法,提出了下面土壤质量微生物学指标体系:①有机碳,②微生物生物量,A总生物量,B细菌生物量,C真菌生物量,D微生物生物量碳、氮比,③潜在可矿化氮,④土壤呼吸,⑤酶活性,A脱氢酶,B磷酸酶,C精氨酸酶,D芳基硫酸酯酶,⑥生物量碳与有机碳比,⑦呼吸量与生物量比,⑧微生物群落,A基质利用,B脂肪酸分析,C核酸分析。
(3)土壤质量的碳氮指标
通常把土壤有机质和全氮量作为土壤质量评价的一个重要指标。其实,更合适的指标是生物活性碳和生物活性氮,它们是土壤有机碳和有机氮的一小部分,能敏感反映土壤质量的变化,以及不同土地利用和管理如耕作、轮作、施肥、残留物管理等对土壤质量的影响。
所谓生物活性有机碳是通过实验法和数学抽象法来定义的。前者分离有机碳的活性组分,按有机碳的稳定性划分为若干组。后者根据土壤有机碳各组分在转化过程中的流程位置及其稳定性,用计算机模拟建立多个动态碳库,活性有机碳库的转化快,转化速率常数较大,土壤活性有机氮反映了土壤氮素供应能力,它可被视为一个单独的氮库,或根据土壤有机质分解动力学分成几个组分。活性有机氮,常用3种表示方法:微生物生物量氮(MBN),潜在可矿化氮(MN)和同位素稀释法测定活性有机氮(ASN)。MBN主要是微生物生物量N和少量土壤微动物氮。PMN是指实验室培养测定的土壤矿化氮,包括全部活性非生物量氮及部分微生物生物量氮。ASN是指参与土壤中生物循环过程中的氮,即用同位素稀释法测定的活性
非生物量氮及固定过程中的微生物生物量氮。(4)土壤质量的生态学指标
物种和基因保持是土壤在地球表层生态系统中的重要功能之一,一个健康的土壤可以滋养和保持相当大的生物种群区系和个体数目,物种多样性应直接与土壤质量关联。关于土壤与生态系统稳定性与多样性的关系,国内已有较多的研究,土壤质量的生态学指标主要有:
①种群丰富度:包括种群个数、个体密度、大动物、节肢动物、细菌、放线菌、真菌等。
②多样性指数:生物或生态复合体的种类、结构与功能方面的丰富度及相互间的差异性。
③均匀度指数:生物个体或群体在土壤中分布的空间特征。
④优势性指数:优势种群的存在及其特征。
某些土壤性状在土壤质量评价中显得十分重要。美国土壤学家提出了土壤质量分析最小指标矩阵(Papendick,etal,1995),其参数为:①团聚性(aggregation),②容重(bulkdensity),③至硬盘的距离(distancetohardpan),④渗滤性(infiltration),⑤电导率(conctivity),⑥持水率(waterholdingcapacity),⑦pH,⑧有机质(organicmatter),⑨可矿化氮(mineralizablenitrogen),⑩呼吸作用(respiration)。
3.根据土壤质量评价指标涉及的内容,土壤质量指标可分为以下四个方面。
(1)土壤肥力:土壤肥力因素包括水、肥、气、热四大肥力因素,具体指标有土壤质地、紧实度、耕层厚度、土壤结构、土壤含水量、田间持水量、土壤排水性、渗滤性、有机质、全氮、全磷、全钾、速效氮、速效磷、缓效钾、速效钾、缺乏性微量元素全量和有效量、土壤通气、土壤热量、土壤侵蚀状况、pH、CEC等。土壤肥力退化主要是指土壤养分贫瘠化,为了维持绿色植物生产,土地(壤)就必须年复一年地消耗它有限的物质贮库,特别是植物所需的那些必要的营养元素,一旦土壤中营养元素被耗竭,土壤就不能满足植物生长。
(2)土壤环境质量:背景值、盐分种类与含量、硝酸盐、碱化度、农药残留量、污染指数、植物中污染物、环境容量、地表水污染物、地下水矿化度与污染物、重金属元素种类极其含量、污染物存在状态及其浓度等。
(3)土壤生物活性:微生物量、C/N、土壤呼吸、微生物区系、磷酸酶活性、脲酶活性等。
(4)土壤生态质量:节肢动物、蚯蚓、种群丰富度、多样性指数、优势性指数、均匀度指数、杂草等。 土壤质量评价指标选择原则
有效性原则:选取的指标能正确反映出土壤的基本功能,是土壤中决定物理、化学及生物学过程的主要特性,对表征土壤功能是有效的。
敏感性原则:选取的土壤质量指标对土壤利用方式,人为扰动过程,土壤侵蚀强度及程度的变化有足够敏感的反应。如果所选指标对土壤变化反应不敏感,则对监测土壤质量变化没有使用价值。但是,指标的敏感性要以监测土壤质量变化的时间尺度而定。
实用性原则:选取的土壤质量指标要易于定量测定,简便实用。在田间或实验室测定时,测定过程稳定,测定误差低,具有较高的再现性与适宜的精度水平。
通用性:影响土壤质量的因素很多,必须立足于综合的、系统的观点。通过分析各种土壤特性在土壤质量形成中的主次作用,选取那些有重要影响的指标,尤其是不要遗漏制约土壤生产力的主要指标。另一方面,也不要无限制地扩大指标的选择面,使整个指标体系复杂化。
一般说来,反映土壤质量与土壤健康的诊断特征可以分成两组,一组是描述土壤健康的描述性特征,另一组是分析性指标,具有定量单位,常为科学家所用。分析性指标通常包括物理指标、化学指标和__生物指标,在土壤质量评价中需要根据不同的土壤、不同的评价目的,按照上述指标选择原则对这些指标进行取舍组合。
(1)土壤物理指标
由于土壤结构的稳定性控制了生态系统内的许多功能,是土壤最基本的质量指标。在评价土壤质量的基本定量体系中,物理性指标包括:土壤质地、土层和根系深度、土壤容重和渗透率、田间持水量、土壤持水特征、土壤含水量。Larson和Pierce(1991)提出了用于控制土壤侵蚀或防止地表水和地下水污染的物理指标为:土壤质地、结构和强度,植物有效水和最大扎根深度;Fitzpatriok(1996)则指出土层的厚度、土壤的结构性在景观中的分布可用来评价土壤与流域过程及土壤生产力,是最通常、简便的指标,同时指出土壤质地与植物生长和水分运移密切相关,是重要的物理指标。Cass(1996)认为土壤退化的程度与土壤结构稳定性有关,选取土壤分散性、土壤强度、水分吸收速率作为关键的物理指标。
(2)土壤化学指标
土壤质量的化学指标包括有机C和N,矿化态的N、P、K、pH、电导率。Duxbury(1994)提出土壤有机质生物活性部分更适于作为土壤质量的指标。Anderson(1990)在考虑评价土壤质量的有机质快速指标时,建议采用微生物活性指标——代谢商。土壤活性有机氮反映了土壤氮素的供应能力,与农业持续发展及环境质量紧密相关,可作为衡量土壤质量的一个重要指标。在测出土壤全N或有机质水平的变化之前,土壤潜在矿化氮(PMN)和土壤活性氮(ASN)的变化就可测到。在确定土壤质量变化时,土壤活性氮是一个灵敏的指标。但是,有关PMN和ASN在年际水平上的动态变化资料不多,进一步的工作是确定如何使用这些参数以及它们各自的局限性。
由于土壤有机质可以对土壤质量和作物产生有益的影响,研究认为SOM是土壤质量的中心指标(美国水土保持学会,1995),甚至把它看作是土壤质量衡量指标中的唯一重要的指标(Larson和Pierce1991;Doran等,1996)。
Singer和Ewing(1999)还强调了污染物对土壤质量的影响,并提出了将污染物的有效性、浓度、活动性和存在状态作为重要化学指标。
(3)土壤生物指标
土壤中的生物是维持土壤质量的重要组成部分,土壤生物学性质能敏感地反映出土壤质量健康的变化,是土壤质量评价不可缺少的指标。生物学指标包括土壤上生长的植物、土壤动物、土壤微生物,其中,应用最多的是土壤微生物指标,多数研究认为,土壤微生物(包括微生物量、土壤呼吸等)是土壤质量变化最敏感的指标。
Kennedy(1995)提出的土壤质量微生物指标包括生物量、细菌、真菌、土壤呼吸、微生物区系以及与微生物活动有关的参数。Turco(1994)认为一个高质量的土壤应该具有良好的生物活性和稳定的微生物种群组成。在农田系统中,在测定土壤有机质变化之前,微生物群落对土壤的变化就可提供可靠的直接证据。微生物多样性指标可评价自然或人为干扰对微生物群落的影响,进一步揭示土壤质量在微生物数量和功能上的差异。对土壤微生物多样性状况的常规检测方法仍处于实验室阶段,一般将微生物量作为常规的土壤质量指标。进一步的工作是确定一套评价土壤质量中生物部分的最小参数集,这些指标应同时考虑生物学过程和种群多样性,能反映干扰的影响,准确评价系统的功能,而且应该是廉价和快速的。
Dick(1994,1996)提出土壤酶活性是作为反映管理措施和环境因子引起的土壤生物学和生物化学变化的指标,尤其是非专一性和水解性的土壤酶活性十分适合这种指标。利用土壤酶活性评价干扰对土壤质量影响时,需要与参照系或特定地区状况进行比较。为简化评价步骤,合理评价某个时刻的土壤质量,有些研究者提出了综合指标,如生物肥力指标、酶数量指标、水解系数指标等,以对酶活性作出评价。对于土壤质量的酶活性指标,科学研究的重点是寻找一个相对或统一的指标;它不需要通过在时间上的多次测定或在处理间的比较来作解释,统一指标应当是土壤生物学、化学和物理学重要参数的综合。 在土壤质量调查中,根据评价的目的、对象、区域环境条件、污染源和污染状况确定调查项目。选择的参数过少或者过多,都不能反映土壤的综合污染特性。从理论上讲,应选择那些与土壤质量的形成和变化有重大关系的参数。譬如以有机物污染为主的地区,选择油、苯并(a)芘、DDT、六六六等。在用生活污水灌溉的地区,主要选择与一般卫生标准有关的参数,如细菌、病菌、蛔虫卵等。在冲积扇上部土层薄的地区,为了保护饮用水源,要注意易溶于水的污染物,如酚、氰、氮、磷等。在平原地区则要注意易溶性盐类。在用含重金属的工业废水或矿区废水灌溉的地区,由于重金属在土壤中不易迁移而易于累积,应选择难迁移的重金属,如汞、镉、铅等。
确定调查项目后,一般采用传统的方法进行调查,在调查中可根据地区的大小选用适当的比例尺以提高调查数值的精确度。比较精确的方法是按方格网络法进行调查。由于方格网络法工作量较大,也可在前一方法调查的基础上绘出等值线,再以内插法补足每一方格数值,用方格网络表示出来。
评价土壤质量要有一种相对的、可比的单位作为衡量尺度,一般采用土壤质量指数。单个污染物质量指数的一般模式为Pi=Ci/Si。式中Pi为污染指数,或称分指数;Ci为污染物的实测值;Si为污染物的
评价标准。
综合质量指数的模式,一般采用单个污染物的质量指数相加,或相加后再平均的方法。即: 式中n 为污染物的种类数。有人利用模糊数学中的系统聚类分析对单个污染物的质量指数进行综合,效果较好。 为了进行评价,绘制质量图,要对求出的指数进行分级。分级一般是先定出“开始污染”和“严重污染”的起始值,然后将两者之间的数值根据需要分为若干级。“开始污染”的起始值一般采用土壤背景值。“严重污染”的起始值一般以土壤环境质量标准表示,或以作物体内污染物含量超过卫生标准时的土壤中污染物含量来表示。也有人以作物减产到一定程度时土壤中的污染物的
含量作为依据。
③ 什么是容重怎么计算啊
容重也称为重度。有两种理解:
1、指单位容积内物体的重量,常用于工程上指一立方的重量,如单位体积土体的重量。
2、表示物体因受地球引力而表现出的重力特性,对于均质流体,指作用在单位体积上的重力。其单位是:牛/立方米或者千牛/立方米。
单位体积所具有的质量称为密度,公式ρ=m/V(kg/m3);单位体积所具有的重量称为容重,公式γ=G/V(N/m3),容重等于密度和重力加速度的乘积,即γ=ρg。
(3)土壤容重标准差是多少扩展阅读
由于Vt大于Vs,故ρb小于ρs。若土壤孔隙Vf占土壤总容积Vt的一半,则ρb为ρs的一半,约为1.30~1.35 g/立方厘米左右。土壤容重与土壤质地、压实状况、土壤颗粒密度、土壤有机质含量及各种土壤管理措施有关。土壤越疏松多孔,容重越小,土壤越紧实,容重越大。
粘质土的容重(1.0~1.5 g/立方厘米)小于砂质土(1.2~1.8 g/立方厘米);有机质含量高、结构性好的土壤容重小;耕作可降低土壤容重。
④ 自然状态下土的比重是多少
自然状态下土的比重是2.65Mg/m³。
天然密度ρ:天然状态下,单位体积土的质量,单位为g/cm3或t/m3,天然密度变化范围较大。一般粘性土ρ=1.8-2.0g/cm3;砂土ρ=1.6-2.0g/cm3;腐殖土ρ=1.5-1.7g/cm3。
土壤(粒)密度:单位体积土壤(不含孔隙)的烘干重量。计算方法类似土壤容重(单位体积土壤(含孔隙)的烘干重量)因此它的数值总是大于土壤容重,是指土壤物理参数之一。单位为克/立方厘米。
测定方法
方法选择:测定土壤密度通常采用环刀法。此外,还有蜡封法,水银排出法,填砂法及射线法等。其中蜡封法和水银排出法主要测定一些呈不规则形状的坚硬和易碎土壤的密度;填砂法比较复杂、费时,除非是石质土壤,一般大量测定都不采用此法;射线法需要特殊仪器和防护设施,不易广泛使用。
⑤ 土的容重是多少
土壤容重应称为干容重,又称土壤假比重,一定容积的土壤(包括土粒及粒间的孔隙)烘干后的重量与同容积水重的比值,用符号ρb表示:b=Ms/Vt=Ms/(Vs+Vw+Va)
土壤容重是由土壤孔隙和土壤固体的数量来决定的。根据土壤容重可以计算出任何单位土壤的重量。其式为: 土壤重量=体积×容重
例如,耕地面积667m2,耕作层厚0.15m,土壤容重为1.34g/cm3(1340kg/m3、1.34T/m3),土壤重量为:
667×0.15×1.34×1000=134067kg。
⑥ 如何测定土壤容重 掌握土壤容重、比重、孔隙度及三相比的测定与计算方法
土壤容重是指单位容积原状土壤干土的质量,通常以克/厘米3表示;孔隙度是指单位容积土壤中孔隙所占的百分率,即土壤固体颗粒间孔隙的百分率.土壤总孔隙度包括毛管孔隙及非毛管孔隙.
土壤容重大小反映土壤结构、透气性、透水性能以及保水能力的高低,一般耕作层土壤容重1~1.3克/厘米3,土层越深则容重越大,可达1.1.6克/厘米3,土壤容重越小说明土壤结构、透气透水性能越好.测定土壤容重的方法很多,着重介绍环刀法:
1、仪器:环刀(容积为100厘米3)、天平(感量0.1克和0.01克)、烘箱、环刀托、削小刀、小铁铲、铝盒、钢丝锯、干燥器等.
2、操作步骤:先在田间选择挖掘土壤剖面的位置,然后挖掘土壤剖面,观察面向阳.挖出的土放在土坑两边.挖的深度一般是1米,如只测定耕作层土壤容重,则不必挖土壤剖面.
用修土刀修平土壤剖面,并记录剖面的形态特征,按剖面层次分层采样,每层重复3个.
将环刀托放在已知重量的环刀上,环刀内壁稍涂上凡士林,将环刀刃口向下垂直压入土中,直至环刀筒中充满样品为止.若土层坚实,可用手锄慢慢敲打,环刀压如时要平稳,用力一致.
用修土刀切开环刃周围的土样,取出已装上的环刀,细心削去环刀两端多余的土,并擦净外面的土.同时在同层采样处用铝盒采样,测定自然含水量.
把装有样品的环刀两端立即加盖,以免水分蒸发.随即称重(精确到0.01克),并记录.
将装有样品的铝盒烘干称重(精确到0.01克),测定土壤含水量.或者直接从环刀筒中取出样品测定土壤含水量.
3、结果计算:环刀容积按下式计算:
V=лr2h
式中:V——环刀容积(厘米3);
r——环刀内半径(厘米);
h——环刀高度(厘米);
л——圆周率(3.1416).
按下式计算土壤容重:
rs=g.100/v.(100+W)
式中:rs——土壤容重(克/厘米3);
G——环刀内湿样重(克);
V——环刀容积(厘米3);
W——样品含水量(%).
此法允许平行绝对误差
⑦ 土壤的容重和基本组成
一.土壤的基本组成 粒级的分类
土壤是由固体、液体和气体三相共同组成的多相体系,它们的相对含量因时因地而异。
土壤固体包括土壤矿物质和土壤有机质。土壤矿物质占土壤的绝大部分,约占土壤固体总重量的90%以上。土壤有机质约占固体总量的1~10%,一般在可耕性土壤中约占5%,且绝大部分在土壤表层。土壤液相是指土壤中水分及其水溶物。土壤中无数空隙充满空气,即土壤气相,典型土壤约有35%的体积是充满空气的空隙,所以土壤具有疏松的结构。
典型土壤随深度呈现不同的层次。最上层为覆盖层(A0),由地面上的枯枝落叶所构成。第二层为淋溶层(A),是土壤中生物作用最活跃的一层,土壤有机质大部分在这一层,金属离子和粘土颗粒在此层中被淋溶的最显着。第三层为淀积层(B),它受纳来自上一层淋溶出来的有机物、盐类和粘土颗粒类物质。C层也叫母质层,是由风化的成土母岩构成。母质层下面为未风化的基岩,常用D层表示。
土壤矿物质是以大小不同的颗粒物状态存在的。不同粒径的土壤矿物质(即土粒),其性质和成分都不一样。在较细的土粒中,钙、镁、磷、钾等元素含量增加。一般地说,土粒越细,所含的养分越多,反之,则约少。为了研究方便,人们常按粒径的大小将土粒分为若干组,称为粒组或粒级,同组土粒的成分和性质基本一致,组间则有明显差异。
粒级的划分标准及详细程度,各国尚不一致,主要有三种不同的划分,即国际制、前苏联制和美国制。
二.土壤与土壤肥力的关系
土壤质地是根据土壤的颗粒组成划分的土壤类型。土壤质地一般分为砂土、壤土和粘土三类,其类别和特点,主要是继承了成土母质的类型和特点,又受到耕作、施肥、排灌、平整土地等人为因素的影响,是土壤的一种十分稳定的自然属性,对土壤肥力有很大影响。其中,砂土抗旱能力弱,易漏水漏肥,因此土壤养分少,加之缺少粘粒和有机质,故保肥性能弱,速效肥料易随雨水和灌溉水流失,而且施用速效肥料效猛而不稳长,因此,砂土上要强调增施有机肥,适时追肥,并掌握勤浇薄施的原则;粘土含土壤养分丰富,而且有机质含量较高,因此,大多土壤养分不易被雨水和灌溉水淋失,故保肥性能好,但由于遇雨或灌溉时,往往水分在土体中难以下渗而导致排水困难,影响农作物根系的生长,阻碍了根系对土壤养分的吸收。对此类土壤,在生产上要注意开沟排水,降低地下水位,以避免或减轻涝害,并选择在适宜的土壤含水条件下精耕细作,以改善土壤结构性和耕性,以促进土壤养分的释放;壤土兼有砂土和粘土的优点,是较理想的土壤,其耕性优良,适种的农作物种类多。
http://www.fjycw.com/ViewNews.aspx?GUID=50-48-50-48-48
三.土壤有机质的组成
土壤有机质是土壤中含碳有机化合物的总称。一般占固相总重量的10%以下,却是土壤的重要组成部分,是土壤形成的主要标志,对土壤性质有很大的影响。
土壤有机质主要来源于动植物和微生物残体。可分为两大类,一类是组成有机体的各种有机化合物,称为非腐殖物质,如蛋白质、醣类、树脂、有机酸等;另一类是称为腐殖质的特殊有机化合物,它不属于有机化学中现有的任何一类,它包括腐殖酸、富里酸和腐黑物等。
四.土壤容重的定义以及它的作用
土壤基质是土壤的固体部分,它是保持和传导物质(水、溶质、空气)和能量(热量)的介质,它的作用主要取决于土壤固体颗粒的性质和土壤孔隙状况。土粒密度指单位体积土粒的质量;土壤容重系指单位容积原状土壤干土的质量;孔隙度是单位容积土壤中孔隙所占的百分率。土粒密度、土壤容重、孔隙度是反映土壤固体颗粒和孔隙状况最基本的参数,土粒密度反映了土壤固体颗粒的性质;土粒密度的大小与土壤中矿物质的组成和有机质的数量有关,利用土粒密度和土壤容重可以计算土壤孔隙度,在测定土壤粒径分布时也须要知道土粒密度值;土壤容重综合反映了土壤固体颗粒和土壤孔隙的状况,一般讲,土壤容重小,表明土壤比较疏松,孔隙多,反之,土粒密度大,表明土体比较紧实,结构性差,孔隙少;土壤孔隙状况与土壤团聚体直径、土壤质地及土壤中有机质含量有关,它们对土壤中的水、肥、气、热状况和农业生产有显着影响。
五.土壤酸碱性对植物生长的影响
土壤酸碱度对土壤养分的有效性有重要影响,在pH6~7的微酸条件下,土壤养分的有效性最好,最有利于植物生长。在酸性土壤中容易引起钾、钙、镁、磷等元素的短缺,而在强碱性土壤中容易引起铁、硼、铜、锰和锌的短缺。土壤酸碱度还通过影响微生物的活动而影响植物的生长。酸性土壤一般不利于细菌的活动,根瘤菌、褐色固氮菌、氨化细菌和硝化细菌大多生长在中性土壤中,它们在酸性土壤中难以生存,很多豆科植物的根瘤常因土壤酸度的增加而死亡。真菌比较耐酸碱,所以植物的一些真菌病常在酸性或碱性土壤中发生。pH 3.5~8.5是大多数维管束植物的生长范围,但生理最适范围要比此范围窄得多。pH<3或>9时,大多数维管束植物便不能生存。
请求加分~
⑧ 容重怎样计算
γ=ρg。
容重也称为重度。有两种理解:
1、指单位容积内物体的重量,常用于工程上指一立专方的重量属,如单位体积土体的重量。
2、表示物体因受地球引力而表现出的重力特性,对于均质流体,指作用在单位体积上的重力。其单位是:牛/立方米或者千牛/立方米。
单位体积所具有的质量称为密度,公式ρ=m/V(kg/m3);单位体积所具有的重量称为容重,公式γ=G/V(N/m3),容重等于密度和重力加速度的乘积,即γ=ρg。
(8)土壤容重标准差是多少扩展阅读:
由于Vt大于Vs,故ρb小于ρs。若土壤孔隙Vf占土壤总容积Vt的一半,则ρb为ρs的一半,约为1.30~1.35g/立方厘米左右。土壤容重与土壤质地、压实状况、土壤颗粒密度、土壤有机质含量及各种土壤管理措施有关。
土壤越疏松多孔,容重越小,土壤越紧实,容重越大。粘质土的容重(1.0~1.5g/立方厘米)小于砂质土(1.2~1.8g/立方厘米);有机质含量高、结构性好的土壤容重小;耕作可降低土壤容重。
亦称“土壤假比重”。一定容积的土壤(包括土粒及粒间的孔隙)烘干后的重量与同容积水重的比值。它与包括孔隙的1立方厘米烘干土的重量用克来表示的土壤容重,在数值上是相同的。一般含矿物质多而结构差的土壤(如砂土),土壤容积比重在1.4-1.7之间;含有机质多而结构好的土壤(如农业土壤),在1.1-1.4之间。
土壤容积比重可用来计算一定面积耕层土壤的重量和土壤孔隙度;也可作为土壤熟化程度指标之一,熟化程度较高的土壤,容积比重常较小。
⑨ 一亩地的耕层土壤大概有多重
基本参数:一亩地666.6667m²,耕层厚度20cm,土壤容重取1.20 g/cm³(约1.1-1.3g/cm³),一亩地的耕层土重量约为666.6667*0.2*1.20*1000=160吨。实际上,要准确估算,还要考虑土壤孔隙度、含水率,这个估算误差很大。
⑩ 土壤容重的计算公式
公式为: 土壤重量=体积×容重
土壤容重指在自然状态下,单位体积(包括粒间孔隙)固体土粒的烘干重,土壤容重的大小决定于质地、结构、有面质含量等因素。容量是土壤的基本物理性质。
可大致了解土壤颗粒排列的紧密程度计算出土壤孔隙度、单位面积一定深度土壤的重量,并以此来推算土壤中水分和养分的贮藏量。
例如,耕地面积667平方米,耕作层厚0.15m,土壤容重为1.34g/立方厘米(1340kg/立方米、1.34T/立方米),土壤重量为:667×0.15×1.34×1000=134067kg。
测定容重的方法很多,如环刀法、蜡封法、填沙法等,本实验用环刀法。
(10)土壤容重标准差是多少扩展阅读
土壤容重是土壤主要物理性状之一,容重的变化直接影响土壤紧实度的改变。容重增加,土壤紧实程度变大。
紧实土壤对根系生长影响的研究结果较为一致,即在紧实土壤中根伸长速度减慢、根变短变粗香根草的固土护坡效果除了因其发达根系外,还与根表面积、根长密度、根体积密度和平均根直径等根系形态参数有关口。
根表面积和根体积密度决定根系吸收水分和营养的能力,进而影响植株的生长。在根量相同的情况下,根平均直径越小,细根所占的比例越大,根长密度越大,固土能力越强。另外,定植初期是最易发生水土流失的时期。因此,香根草根系早期的分布和形态是决定固土护坡效果好坏的关键。