葡聚糖标准曲线斜率是多少
1. 我想做β-葡聚糖的FITC荧光标记,从百度知道知道你很久前做过的,麻烦介绍交流下。
目的:测定肿瘤组织异硫氰酸荧光素标记的葡聚糖(FITC�dextran)粘附水平是否可作为肿瘤血管密度的量化指标。方法:用endolgin疫苗免疫小鼠后,在同一只小鼠上同时建立小鼠Meth A纤维肉瘤模型和藻酸盐包被肿瘤细胞试验模型,2周后将FITC�dextran注射入小鼠体内,然后手术完整摘取肿瘤组织和藻酸盐颗粒,取部分肿瘤组织进行免疫组化检测血管密度的同时,将其他组织和藻酸盐颗粒匀桨并离心,取上清检测荧光强度,分析二者之间是否存在直线相关关系。结果:免疫组化和肉眼观察显示2种测定方法均有明显的血管生成效应,用FITC�dextran粘附测定肿瘤组织血管相对密度和藻酸盐包被试验均能较好地量化测定抗血管生成效果,直线相关分析表示二者的疫苗免疫实验组FITC�dextran的测定值之间呈明显的正性相关关系(r = 0.962,P<0.01)。结论:和藻酸盐包被试验相比,FITC�dextran测定肿瘤组织血管相对密度是一种简单有效的量化测定肿瘤组织血管生成水平的方法。
【关键词】 肿瘤;血管;动物模型;藻酸盐包被肿瘤细胞试验
Quantitative determination of relative tumor vascularity by FITC�dextran adsorption
TAN Guang�hong, HUANG Feng�ying, WANG Hua, et al.
( Hainan Provincial Key Laboratory of Tropical Medicine, Haian Medical College, Hainan, Haikou 571101, P.R. of China)
〔ABSTRACT〕 Objective: To evaluate whether determination of FITC-dextran adsorption in tumor tissues is suitable for quantitative evaluation of tumor angiogenesis. Methods: After inction of antiangiogenic immunity in mice using xenogenic endogin protein, Meth A fibrosarcoma tumor cells were incubated in the conventional method of setting tumor model. Alginate�encapsulate tumor cell assay was performed on the same mouse at the same time, and no immune mice were used as control as well. 14 days later, alginate beads and the whole tumor tissue were removed surgically and quantified the uptake of FITC�dextran, and partial tumor tissues were used for immunohistochemistry determination of the vessel density, using antibody reactive to CD31. In addition, linear correlation analysis was used to evaluate the relationship. Results: The antiangiogenic effects were significantly inced in the two models respectively, and linear correlation analysis of the uptake of FITC�dextran showed significant positive correlations between the two vaccine�immunized treated groups in the two models (r=0.962, P<0.01). Conclusion: Determination of relative tumor vascularity in the tumor tissue using FITC�dextran adsorption can be used as an antiangiogenic model in vivo.
〔KEY WORDS〕 Tumor; Blood vessel, Animal model, Alginate�encapsulate tumor cell assay
肿瘤的发生、发展和转移与血管生成(angiogenesis)密切相关。我们在研究实验中发现〔1,2〕,如果抗肿瘤血管生成的治疗方案确实有效,除了表现为肿瘤体积较小,生存时间延长外,在肿瘤的组织切片中也表现为血管密度明显减少。藻酸盐包被肿瘤细胞模型是目前定量测定肿瘤血管生成的标准方法〔3〕,它的主要原理是将异硫氰酸荧光素标记的葡聚糖(FITC�dextran)注射进入体内后,葡聚糖就会粘附于内皮细胞表面、部分可能被内皮细胞吸收而滞留于血管腔中。通过测定藻酸盐颗粒中的葡聚糖的荧光强度并和标准曲线相比较,就可得到量化的结果。因此我们设想,如果肿瘤组织中血管密度相对较少,肿瘤组织的血管粘附、吸收和滞留葡聚糖的数量也应该相应减少,通过比较不同肿瘤组织吸收FITC�dextran相对荧光强度,就能够量化了解不同肿瘤组织的血管密度。本研究将FITC�dextran注射于活体荷瘤小鼠中,然后测定肿瘤组织FITC�dextran水平并和藻酸盐包被模型相比较,了解二者之间是否存在相关关系。
1 材料与方法
1.1 实验材料
FITC�dextran购自Sigma Chemical公司,藻酸钠(Alginic Acid,Sodium Salt)购自Sigma Chemical 公司,苯巴比妥钠购自上海新亚药业有限公司,RPMI�1640培养基和胎牛血清(FCS)购自美国GibicoBRL公司。重组猪endoglin蛋白为作者构建表达并纯化〔1〕。6~8周龄雌性BALB/c小鼠购自四川大学动物中心,小鼠Meth A 纤维肉癌(Meth A)细胞株由生物治疗国家重点实验室(四川大学)赠送。大鼠抗小鼠CD31(PECAM�1)单克隆抗体购自BD Pharmingen公司,VECTASTAIN Elite ABC Kit 购自Vector Laboratories公司。荧光酶标仪Microplate Fluorescence Reader,FL600,为Bio�Tek公司产品。
1.2 实验方法
1.2.1 免疫方法 将重组endoglin蛋白冻干粉剂于无菌条件下称量,溶于无菌的生理盐水(NS)中,与灭菌的氢氧化铝凝胶佐剂〔A〕(OH)3按4∶1(V/V)混匀(氢氧化铝终浓度约为2 mg/mL),室温下放置30~60 min。然后将实验小鼠随机分两组,每组各10只。实验组小鼠每只背部皮下注射上述混合好的endgolin蛋白疫苗每次10 μg(100 μL)。对照组每只小鼠注射NS:佐剂为4∶1的混合液100 μL。每组注射均为1周1次,共4次。
1.2.2 细胞培养 从液氮中取出冻存保种的Meth A细胞,迅速置于37 ℃水浴复温融化,在超净工作台内用培养基洗涤1次。然后用完全培养基于37 ℃,5% CO2培养箱中培养。收集对数生长期细胞,1 500 rpm离心3 min,细胞沉淀用无抗生素无血清的培养基洗涤1次,计数细胞数量后用无抗生素无血清的培养基调整细胞浓度至1×107/mL。
1.2.3 藻酸盐包被模型的建立 按文献进行〔3〕,略加改进。无菌条件下,首先将藻酸钠溶于无菌生理盐水,终浓度为1.5% (W/V);并将收集培养的肿瘤细胞重悬于1.5%藻酸钠溶液中,然后用1 mL加样枪将细胞和藻酸盐混合液缓慢滴入磁力搅拌的250 mM CaCl2溶液中,形成乳白色的小珠。实验前进行预实验,使每个小珠约含有2×105个细胞。继续静置于250 mM CaCl2中30 min即可使用。此后将第4次免疫7 d后的小鼠用苯巴比妥钠0.1 mL (100 mg/kg)腹腔注射麻醉。小鼠麻醉后置于解剖台上,切开背部皮肤,在切口左侧下方上下不同部位各植入1粒按上述方法制备好的藻酸盐小珠,缝合皮肤。14 d以后,从尾静脉注入100 μL(100 mg/kg) FITC�dextran,30 min后断颈处死,取出藻酸盐小珠,常温下加入0.5 mL的生理盐水,混匀标本,放置1 h, 1 500 rpm离心5 min。取上清液200 μL用荧光酶标仪测定荧光强度,用不同浓度的FITC�dextran制备标准曲线,得出每只小鼠的测定值。
1.2.4 小鼠肿瘤模型的建立 上述藻酸盐小珠植入小鼠体内后,同时将Meth A细胞接种到每只小鼠的右侧胁肋部皮下,每只接种2×106个细胞(0.2 mL)。14 d后断颈处死,在取出藻酸盐小珠的同时,用手术器械分离出完整的肿瘤组织,准确称重后剪碎肿瘤组织,按重量每克肿瘤组织加入生理盐水2 mL,磨碎成匀浆,在摇床上摇动1 h后1 500 rpm离心5 min,同样取上清200 μL测定荧光强度,对照相应标准曲线得出各个标本的测定值。
1.2.5 肿瘤组织血管免疫组化染色 参考文献〔1,2〕取各组新鲜肿瘤组织进行冰冻切片。抗CD31免疫组化方法按Vector Laboratories公司试剂盒操作说明书进行。肿瘤组织微血管定量也按相关文献报道方法进行〔1,2〕。
1.3 统计学分析
模型内肿瘤体积和荧光强度比较用Student's T检验,模型间相关性用线性相关分析。
2 结果
2.1 肿瘤生长和免疫组化检测肿瘤血管密度
用重组猪的endoglin蛋白作为抗肿瘤血管生成疫苗具有明显的抑制肿瘤生长和抗血管生成的作用,疫苗免疫组肿瘤生长明显慢于非免疫对照组;疫苗免疫组和非免疫对照组肿瘤重量分别为(0.52±0.13) g和(2.37±0.31) g(P<0.001),(图1 A)。14 d后处死小鼠,用抗CD31免疫组化染色肿瘤组织血管,和非免疫对照组相比(图1C),结果发现,疫苗免疫组肿瘤组织血管明显减少(图1D),疫苗免疫组和非免疫对照组肿瘤组织血管密度平均每高倍视野分别为(10.82±3.91)和(46.58±8.73)(P< 0.001)(图 1 B)。
注:A:肿瘤重量;B:微血管密度定量分析;C:疫苗免疫治疗组肿瘤组织免疫组化;D:非免疫对照组肿瘤组织免疫组化;Trea:疫苗免疫治疗组;Cont:非免疫对照组。
图1 Endoglin重组蛋白抑制肿瘤血管生成(略)
2.2 FITC�dextran粘附测定肿瘤组织血管生成状况
肿瘤细胞接种14 d后处死小鼠,经尾静脉注射FITC�dextran,取出肿瘤组织后测定相对的FITC�dextran粘附数量,疫苗免疫组和非免疫对照组FITC�dextran 的粘附量分别为(2.53±0.82) μg和(7.56±1.27) μg,统计分析表明两组间具有显着性差异(P<0.001)(图2 A)。
2.3 藻酸盐包被实验测定肿瘤组织血管生成效应
当14 d后切开植入藻酸盐颗粒部位的皮肤后,肉眼就可看见疫苗免疫组(图 2 C)的藻酸盐颗粒表面几乎没有可见的血管,而非免疫对照组的藻酸盐颗粒(图 2 D)均见有明显的血管分布,疫苗免疫组FITC�dextran 的粘附量也明显低于非免疫对照组,分别为(0.76±0.35) μg和(2.34±0.79) μg,统计分析表明两组间同样具有显着性差异(P<0.001)(图2 B )。
2.4 肿瘤组织FITC�dextran粘附与藻酸盐包被实验测定相关性分析
将肿瘤组织与藻酸盐包被实验测定疫苗免疫实验组的FITC�dextran粘附量数值进行相关性分析,将这两组数值代入直线相关公式求出相关系数r值,并进行假设检验,结果相关系数r=0.962,假设检验P<0.001,表明二者之间呈明显的直线正相关(图3)。
注:A:肿瘤组织直接测定的FITC�dextran量;B:藻酸盐包被肿瘤细胞试验测定的FITC�dextran量;C:疫苗免疫治疗组藻酸盐小珠;D:非免疫对照组藻酸盐小珠;Trea:疫苗免疫治疗组;Cont:非免疫对照组。
图2 肿瘤组织直接测定FITC�dextran和藻酸盐包被肿瘤细胞试验(略)
图3 肿瘤组织直接测定和藻酸盐包被肿瘤细胞试验测定的FITC�dextran呈直线正相关(略)
3 讨论
Endoglin是一种细胞膜表面分子,主要表达于激活的内皮细胞表面;研究证实endoglin是肿瘤血管生成的一个新的标志〔4〕,用抗endoglin抗体在动物肿瘤模型中已取得了良好的抗血管和抑制肿瘤生长的效果〔5,6〕。本研究所应用的猪endoglin是我们从猪胚肝中克隆得到cDNA的基础上,将其构建于原核表达载体,然后诱导表达并经严格纯化得到的重组蛋白质。在以往的研究中,我们已经证实用这种重组蛋白作为小鼠endoglin的异种同源蛋白疫苗,免疫小鼠能诱导小鼠产生抗猪和鼠自身endoglin的抗体,并且在多个肿瘤模型中发现具有抗肿瘤血管生成从而明显抑制肿瘤生长的作用〔1,2〕。本研究用免疫组化和藻酸盐包被肿瘤细胞实验都发现用猪的endoglin 重组蛋白作为疫苗免疫小鼠后,确实具有抗小鼠Meth A纤维肉瘤血管生成的作用。
抗肿瘤血管生成研究是当今肿瘤研究中的一个热点,几乎每天都有新的研究成果发表于不同的学术刊物上,因此,一种简便有效而又能够定量的抗血管生成模型对肿瘤抗血管生成研究具有十分现实的意义。当前,研究中常用的抗肿瘤血管生成模型主要包括:角膜模型、鸡胚内囊膜模型和藻酸盐包被肿瘤细胞模型等,前者需要在小鼠的角膜上进行微创手术,一般实验者很难掌握,实验结果难以量化处理。而鸡胚内囊膜模型的操作也比较复杂,许多药物还不适合用于此模型,同样也难以进行量化处理。藻酸盐包被模型尽管能准确量化,并且能从外观上看出抗血管生成效果,但是需要进行麻醉和手术,在这个过程中实验小鼠很容易死亡。另外,藻酸盐浓度控制得不好或是操作过程中出错都可导致包被于藻酸盐中的肿瘤细胞死亡,影响实验结果。在本研究中,我们直接用接种2周的肿瘤组织为研究对象,因为任何有效的抗肿瘤血管生成的治疗都会抑制肿瘤血管生成,致使肿瘤生长减慢,除了表现为肿瘤体积减少和重量较轻以外,整个肿瘤组织血管密度和血管腔容积也应该相应减少。因此,当从外周把FITC�dextran灌注进机体后,在相同重量的肿瘤组织中,血管密度和血管容积均减少的肿瘤组织粘附、吸收和滞留FITC�dextran的量也应该相对减少,这样通过测定相同重量的不同肿瘤组织就可以量化比较出这些差异,本研究的实验结果完全支持这些观点。经相关分析,实验结果和现在文献常用的藻酸盐包被肿瘤细胞实验结果呈显着的直线正性相关关系。但是,由于直接测定肿瘤组织血管相对密度的操作方法就是常规的建立肿瘤模型的方法,具有过程简单,易于操作等优点。尽管目前文献尚未见有实际应用的报道,但是我们认为这一种直接测定肿瘤组织粘附FITC�dextrane进而量化肿瘤血管相对密度的方法实用可行,具有推广应用的价值。
【参考文献】
1 Tan GH, Wei YQ, Tian L, et al. Active immunotherapy of tumors with a recombinant xenogeneic endoglin as a model antigen 〔J〕. Eur J Immunol, 2004,34(7):2012�2021.
2 Tan GH, Tian L, Wei YQ, et al. Combination of low�dose cisplatin and recombinant xenogeneic endoglin as a vaccine inces synergistic antitumor activities〔J〕. Int J Cancer,2004,112(4):701�706.
3 Hoffmann J, Schirner M, Menrad A, et al. A highly sensitive model for quantification of in vivo tumor angiogenesis inced by alginate�encapsulated tumor cells 〔J〕. Cancer Res,1997,57(17):3847�3851.
4 Fonsatti E, Vecchio LD, Altomonte M, et al. Endoglin: an accessory component of the TGF�β�binding receptor�complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies 〔J〕. J Cell Physiol,2001,188(1):1�7.
5 Seon BK, Matsuno F, Haruta Y, et al. Long�lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin 〔J〕. Clin Cancer Res,1997,3(7): 1031�1044.
6 Matsuno F, Haruta Y, Kondo M, et al. Inction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti�endoglin monoclonal antibodies 〔J〕. Clin Cancer Res,1999,5(2):371�382.
2. 乳糜微粒的注意事项
(1) 免疫透射比浊法:① 关于抗血清:比浊测定与其他方法相比对抗血清的要求更高。比浊法以用多克隆抗体为宜。抗血清中必须不含杂抗体。必须十分重视从人血清中提取的apoA-Ⅰ达到免疫纯、色谱纯与电泳纯,这不是一般实验室都能做到的。抗血清效价(滴度)不可低于16。目前国内某些商品试剂中,apoA-Ⅰ抗血清效价极低,选购试剂盒时必须注意。如果没有在选购前鉴定抗血清质量的经验,应请有条件的单位鉴定之。② 上法中标本(血清)稀释200倍是为了便于手工操作(加样100μl),如有精密加样器,可作20倍稀释(用10μl)。为了适合不同实验室的条件(如不同类型的自动化仪器),作适当修改时应注意抗原抗体的比例,必须十分注意反应体系中不可有抗原过量,线性上限不可低于2.5g/L。换言之,抗血清用量必须充裕,否则标本中apoA-Ⅰ高水平时测出结果偏低。目前国内某些商品试剂盒不但抗血清效价过低,操作中所定标本用量又过大(如3-5μl),抗体明显不足,测出结果必然不准确。③ 为了达到准确测定的目的,apoA-Ⅰ与B比浊测定(终点法)中必须作校准曲线计算结果。一定范围(低标本用量)浓度(X)与浊度(Y)基本上成直线关系,直线回归计算出在Y轴上有一定截距(A值<0.1),所以用单点校准计算结果偏差较大,使测出结果不能准确反映浓度的高低(高的偏低,低的偏高)。千万不要因为单点法简便而忽略了测定的准确性。无论用何种自动化仪器,必须先试作校准曲线。如果在所用仪器及特定条件下反复测试,回归线的截距不明显时,才能采用单点校准法。标本用量在3-5μl时,即使加大抗血清用量,浓度与浊度也不成直线关系,只能用曲线直线化转换后计算。④ 主要干扰因素是血清本身的混浊(如高脂血清),用超离心或脂肪酶水解等标本预处理方法都不实用。用表面活性剂消浊的作用也有限,所以在测定中必须作标本空白管。除了自动分析中可采用两点法外,手工法用单一试剂而不扣除标本空白的做法是错误的。为了减少基质效应对浊度反应的影响,必须用定值血清作校准物。此外,尘埃粒子、比浊皿划痕等干扰也必须排除。⑤ 有的商品试剂盒(包括某些进口产品)所附校准血清定值不准确,是误差的重要来源。(2) 火箭电泳法:① 抗原稀释倍数与抗血清用量的选择,应以火箭峰清晰、校准曲线斜率适中并成直线为宜。本法同时测定apoA-Ⅰ与apoB,应调整两种抗血清用量,使二者峰高有区别,apoB峰高不小于1cm。② 不同种类来源的抗血清(如兔与羊),在等效价的情况下进行试验,结果会有差异。apoA-Ⅰ测定以兔抗血清为好。用兔血清时峰形尖细,而羊血清所产生的峰粗,峰尖圆钝,有时在峰顶前出现虚影。校准血清所作校准曲线斜率也不同。但不论用何种抗血清,定量结果差别不大。③ 在一定条件下电泳,不同稀释度校准血清的峰高不会有明显变动,校准曲线斜率基本一致。如标本峰高超出校准曲线范围时,应调整标本稀释倍数后重测。板间CV通常小于5%。④ 火箭电泳结果可以用染色法或直接肉眼观察可见的火箭峰。前者用标本少,节省抗血清,但如适当增加标本及抗血清用量,不染色更为方便。所用琼脂糖应为标准电渗或低电渗的,凝胶中加入适量葡聚糖或聚乙二醇可使火箭峰更清晰。⑤ 火箭峰的测量可以计算面积或峰高,面积是峰高乘以峰宽(峰半高处的宽度)。测量精度最好能达0.1mm。须用机械或电子放大设备。标准曲线范围内峰高以1-4cm为宜。⑥ 本法适用于少量标本分析。也适用于apoAⅡ、CⅠ、CⅡ、CⅢ、D、E及Lp(a)测定。
3. β-葡聚糖的测定方法
β-葡聚糖含量的测定方法,大致可归纳为如下几类:
(1)粘度法:其原理是大麦抽提液的粘度主要由β-葡聚糖产生(Burnett,1966;White等,1983)。这种方法可靠性较差,因为不同来源的β-葡聚糖的分子量不同;而在葡聚糖含量相同时,分子量较大者产生的粘度较大,这样β-葡聚糖粘性的大小并不完全取决于其含量,也取决于分子量大小(Sanlinier等,1994)。另外,抽提条件对其粘度有明显的影响。
(2)沉淀法:其原理是利用特定的盐或有机溶剂沉淀抽提液中的β-葡聚糖(Wood,1986)。该方法的局限性在于抽提不能完全排除其它物质的干扰。在高温下抽提时,抽提液中含有其它成分如淀粉等,因而干扰测定的结果。
(3)酶法:Anderson等(1978)采用特定的β-葡聚糖内切酶得到寡糖,经酸解后采用葡萄糖氧化酶/过氧化酶试剂测定葡萄糖的含量。此法后经Henry等(1988)修改为测定还原糖的含量,这样虽然精确性和可靠性有所降低,但因测定更为迅速而实用性明显提高。另外,Martin等(1981)和郑祥建等(1995)用纤维素酶测定谷物中β-葡聚糖的含量。这主要根据纤维酶不能分解微晶纤维素,而谷物中的纤维素多为微晶状,因而不至于干扰β-葡聚糖的测定结果。由于酶法不需要抽提,选用的酶为特定的,因而精确性和可靠性较高。
(4)荧光法:主要是利用荧光物质(Calcoflour)可与β-葡聚糖特异性结合,而与其它多糖如纤维素、戊聚糖的亲和力很弱这一特性进行测定。Wood等(1984)利用此法测定了燕麦的β-葡聚糖含量。Sendry等(1989)则利用改进的Calcoflour-FIA法测定了啤酒和麦芽汁的β-葡聚糖含量。由于此法操作简单,可进行大批量的样品测定,因此有较好的实际应用价值
(5)刚果红法:根据刚果红与β-葡聚糖结合具有高度专一性,将刚果红加入样品溶液中,在一定温度下准确反应一定时间后,测定其吸光度,根据β-葡聚糖标准曲线可知样品中β-葡聚糖的含量。
4. 在波长552nm下制葡萄糖标准曲线,正确的吸光度是多少谢谢~
以浓度为横坐标,光密度值为纵坐标,做一条45度且过原点的直线。在横坐标标出每个试管的浓度及其纵坐标所对应的吸光度为点坐标(浓度x,吸光度值y)。看看八个点是否在直线上,一般只要有3-5个点在直线上就可以。
5. 鉴定多糖的方法
1、方法提要
食品中相对分子质量>1×104的高分子物质在80%乙醇溶液中沉淀,与水溶液中单糖和低聚糖分离,用碱性二价铜试剂选择性地从其他高分子物质中沉淀具有葡聚糖结构的多糖,用苯酚-硫酸反应以碳水化合物形式比色测定其含量,其显色强度与粗多糖中葡聚糖的含量成正比,以此计算食品中粗多糖含量。
2、主要仪器
(1)分光光度计。
(2)离心机(3000r/min)。 (3)旋转混匀器。
3、试剂
本方法所用试剂除特殊注明外,均为分析纯;所用水为去离子水或同等纯度蒸馏水。
(1)乙醇溶液(80%):20mL水中加入无水乙醇80mL,混匀。
(2)氢氧化钠溶液(100g/L):称取100g氢氧化钠,加水溶解并稀释至1L,加入固体无水硫酸钠至饱和,备用。
(3)铜试剂储备液:称取3.0gCuSO4•5H2O,30.0g柠檬酸钠,加水溶解并稀释至1L,混匀,备用。
(4)铜试剂溶液:取铜试剂储备液50mL,加水50mL,混匀后加入固体无水硫酸钠12.5g并使其溶解。临用新配。
(5)洗涤剂:取水50mL,加入10mL铜试剂溶液、10mL氢氧化钠溶液,混匀。
(6)硫酸溶液(10%):取100mL浓硫酸加入到800mL左右水中,混匀,冷却后稀释至1L。
(7)苯酚溶液(50g/L):称取精制苯酚5.0g,加水溶解并稀释至100mL,混匀。溶液置冰箱中可保存1个月。
(8)葡聚糖标准储备液:准确称取相对分子质量5×105已干燥至恒重的葡聚糖标准品0.5000g,加水溶解,并定容至50mL,混匀,置冰箱中保存。此溶液1 mL含10.0mg葡聚糖。
(9)葡聚糖标准使用液:吸取葡聚糖标准储备液1.0mL,置于100mL容量瓶中,加水至刻度,混匀,置冰箱中保存。此溶液1mL含葡聚糖0.10mg。
4、测定步骤
(1)样品处理:
a、沉淀粗多糖:准确吸取液体样品5.0mL,置于50mL离心管中,加入无水乙醇20mL,混匀5min后,以3000r/min离心5min,弃去上清液,反复操作3~4次。残渣用水溶解并定容至5.0mL,混匀后,供沉淀葡聚糖。
b、沉淀葡聚糖:准确吸取b项终溶液2mL置于20mL离心管中,加入100g/L氢氧化钠溶液2.0mL铜试剂溶液2.0mL,沸水浴中煮沸2min,冷却,以3000r/min离心5min,弃去上清液。残渣用洗涤液数毫升洗涤,离心后弃去上清液,反复操作3次,残渣用10%(体积分数)硫酸溶液2.0mL溶液并转移至50mL容量瓶中,加水稀释至刻度,混匀。此溶液为样品测定液。
(2)标准曲线的绘制:准确吸取葡聚糖标准使用液0、0.10、0.20、0.40、0.60、0.80、1.00mL(相当于葡聚糖0、0.01、0.02、0.04、0.06、0.08、0.10mg)分别置于25mL比色管中,准确补充水至2.0mL,加入50g/L苯酚溶液1.0mL,在旋转混匀器上混匀,小心加入浓硫酸10.0mL,于旋转混匀器上小心混匀,置沸水浴中煮沸2min,冷却后用分光光度计在485nm波长处以试剂空白溶液为参比,1cm比色皿测定吸光度值。以葡聚糖浓度为横坐标,吸光度值为纵坐标,绘制标准曲线。
(3)样品测定:准确吸取样品测定液2.0mL置于25ml比色管中,加入50g/L苯酚溶液1.0mL,在旋转混匀器上混匀,小心加入浓硫酸10.0mL于旋转混匀器上小心混匀,置沸水浴中煮沸2min,冷却至室温,用分光光度计在485nm波长处,以试剂空白为参比,1cm比色皿测定吸光度值。从标准曲线上查出葡聚糖含量,计算样品中粗多糖含量。同时做样品空白实验。
5、结果计算
(m1-m2)×V1×V3×V5 X= —————————— m3×V2×V4×V6式中 X—样品中粗多糖含量(以葡聚糖计)(mg/g);
m1—样品测定液中葡聚糖的质量(mg);
m2—样品空白液中葡聚糖质量(mg);
m3—样品质量(g);
V1 —样品提取液总体积(mL);
V2—沉淀粗多糖所用样品提取液体积(mL);
V3 —粗多糖溶液体积(mL);
V4—沉淀葡聚糖所用粗多糖溶液体积(mL);
V5—样品测定液总体积(mL);
V6—测定用样品测定溶液体积(mL)。
6、准确度与精密度在不同食品中进行不同浓度的加标回收实验,回收率为87.8%~110.87%,不同实验室对同一样品进行10次测定结果的相对标准偏差为5.8%。
6. 测定糖的含量的方法有哪些
糖的测定方法
一般有四种方法:
1、 直接滴定法。
原理为 糖还原天蓝色的氢氧化铜为红色的氧化亚铜。缺点:水样中的还原性物质能对糖的测定造成影响。
2、 高锰酸钾滴定法。
所用原理同直接滴定法。缺点:水样中的还原性物质能对糖的测定造成影响,过程较为复杂,误差大。
3、硫酸苯酚法。
糖在浓硫酸作用下,脱水形成的糠醛和羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10-100mg范围内其颜色深浅与糖的含量成正比,且在485nm波长下有最大吸收峰,故可用比色法在此波长下测定。苯酚法可用于甲基化的糖、戊糖和多聚糖的测定,方法简单,灵敏度高,实验时基本不受蛋白质存在的影响,并且产生的颜色稳定160min以上。
缺点:如果水样呈橙红色(大部分水样为黄色),会对比色法造成较大的干扰。
4、蒽酮法
糖在浓硫酸作用下,可经脱水反应生成糠醛和羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的测定。
缺点:,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅。
综合比较;采用蒽酮法能将最为准确地测定尾水中糖的含量。
(一) 直接滴定法
Ⅰ、原理
v 一定量的碱性酒石酸铜甲、乙液等量混合,立即生成天蓝色的氢氧化铜沉淀,这种沉淀很快与酒石酸钠反应,生成深蓝色的可溶性酒石酸钾钠铜络合物。在加热条件下,以次甲基蓝作为指示剂,用标液滴定,样液中的还原糖与酒石酸钾钠铜反应,生成红色的氧化亚铜沉淀,待二价铜全部被还原后,稍过量的还原糖把次甲基蓝还原,溶液由蓝色变为无色,即为滴定终点。根据样液消耗量可计算出还原糖含量。
样品经除去蛋白质后,在加热条件下,以次甲基蓝做指示剂,滴定标定过的碱性酒石酸铜溶液(用还原糖标准溶液标定碱性酒石酸铜溶液),根据样品溶液消耗体积计算还原糖量。
Ⅱ、仪器和试剂
1.仪器
酸式滴定管,可调电炉(带石棉板),250ml容量瓶。
2.试剂
1. 盐酸。
2. 碱性酒石酸铜甲液:称取15g硫酸铜(CuSO4·5H2O)及0.05g次甲基蓝,溶于水中并稀释至1000mL。
3. 碱性酒石酸铜乙液:称取50g酒石酸钾钠与75g氢氧化钠,溶于水中,再加入4g亚铁氰化钾,完全溶解后,用水稀释至1000 ml,贮存于橡胶塞玻璃瓶内。
4. 乙酸锌溶液:称取21.9 g乙酸锌,加3ml冰乙酸,加水溶解并稀释至100ml。
5. 亚铁氰化钾溶液:称取10.6g亚铁氰化钾,用水溶解并稀释至100ml。
6. 葡萄糖标准溶液:准确称取1.0000g经过96℃±2℃干燥2h的纯葡萄糖,加水溶解后加入5ml盐酸,并以水稀释至1000L。此溶液相当于1mg/ml葡萄糖(注:加盐酸的目的是防腐,标准溶液也可用饱和苯甲酸溶液配制)。
7. 果糖标准溶液:按⑹操作,配制每毫升标准溶液相当于1mg的果糖。
8. 乳糖标准溶液:按⑹操作,配制每毫升标准溶液相当于1mg的乳糖。
9. 转化糖标准溶液:准确称取1.0526g纯蔗糖,用100ml水溶解,置于具塞三角瓶中加5ml盐酸(1+1),在68℃~70℃水浴中加热15min,放置至室温定容至1000ml,每ml标准溶液相当于1.0mg转化糖。
Ⅲ、实验步骤
1.样品处理
⑴ 乳类、乳制品及含蛋白质的食品:称取约2.50~5.00g固体样品(吸取25~50ml液体样品),置于250 ml容量瓶中,加50 ml水,摇匀。边摇边慢慢加入5ml乙酸锌溶液及5ml亚铁氢化钾溶液,加水至刻度,混匀。静置30 min,用干燥滤纸过滤,弃去初滤液,滤液备用。(注意:乙酸锌可去除蛋白质、鞣质、树脂等,使它们形成沉淀,经过滤除去。如果钙离子过多时,易与葡萄糖、果糖生成络合物,使滴定速度缓慢;从而结果偏低,可向样品中加入草酸粉,与钙结合,形成沉淀并过滤。)
⑵ 酒精性饮料:吸取100ml样品,置于蒸发皿中,用1 mol/L氢氧化钠溶液中和至中性,在水浴上蒸发至原体积1/4后,移入250ml容量瓶中,加水至刻度。
⑶ 含多量淀粉的食品:称取10.00~20.00g样品,置于250ml容量瓶中,加200ml水,在45℃水浴中加热1h,并时时振摇(注意:此步骤是使还原糖溶于水中,切忌温度过高,因为淀粉在高温条件下可糊化、水解,影响检测结果。)。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液于另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氢化钾溶液,加水至刻度,混匀,沉淀,静置30 min,用干燥滤纸过滤,弃去初滤液,滤液备用。
⑷ 汽水等含有二氧化碳的饮料:吸取100ml样品置于蒸发皿中,在水浴上除去二氧化碳后,移入250ml容量瓶中,并用水洗涤蒸发皿,洗液并入容量瓶中,再加水至刻度,混匀后备用。(注意:样品中稀释的还原糖最终浓度应接近于葡萄糖标准液的浓度。)
2. 标定碱性酒石酸铜溶液:吸取5.0ml碱性酒石酸铜甲液及5.0ml乙液,置于150ml锥形瓶中(注意:甲液与乙液混合可生成氧化亚铜沉淀,应将甲液加入乙液,使开始生成的氧化亚铜沉淀重溶),加水10 ml,加入玻璃珠2粒,从滴定管滴加约9 ml葡萄糖标准溶液或其他还原糖标准溶液,直至溶液兰色刚好褪去为终点,记录消耗的葡萄糖标准溶液或其他还原糖标准溶液总体积,平行操作三份,取其平均值,计算每10 ml(甲、乙液各5 ml)碱性酒石酸铜溶液相当于葡萄糖的质量或其他还原糖的质量(mg)。(注意:还原的次甲基蓝易被空气中的氧氧化,恢复成原来的蓝色,所以滴定过程中必须保持溶液成沸腾状态,并且避免滴定时间过长。)
3. 样品溶液预测:吸取5.0 ml碱性酒石酸铜甲液及5.0 ml乙液,置于150 ml锥形瓶中,加水10 ml,加入玻璃珠2粒,控制在2 min内加热至沸,趁沸以先快后慢的速度,从滴定管中滴加样品溶液,并保持溶液沸腾状态,待溶液颜色变浅时,以每两秒1滴的速度滴定,直至溶液蓝色褪去,出现亮黄色为终点。如果样品液颜色较深,滴定终点则为兰色褪去出现明亮颜色(如亮红),记录消耗样液的总体积。(注意:如果滴定液的颜色变浅后复又变深,说明滴定过量,需重新滴定。) 当试样溶液中还原糖浓度过高时应适当稀释,再进行正式测定,使每次滴定消耗试样溶液的体积控制在与标定碱性酒石酸酮溶液时所消耗的还原糖标准溶液的体积相近,约在10ml左右。当浓度过低时则采取直接加入10ml样品溶液,免去加水10ml,再用还原糖标准溶液滴定至终点,记录消耗的体积与标定时消耗的还原糖标准溶液体积之差相当于10ml试样溶液中所含还原糖的量。
4. 样品溶液测定:吸取5.0 ml碱性酒石酸铜甲液及5.0 ml乙液,置于150 ml锥形瓶中,加水10 ml,加入玻璃珠2粒,在2 min内加热至沸,快速从滴定管中滴加比预测体积少1 ml的样品溶液,然后趁沸继续以每两秒1滴的速度滴定直至终点。记录消耗样液的总体积,同法平行操作两至三份,得出平均消耗体积。
5. 计算
样品中还原糖的含量(以某种还原糖计)按下式计算。
X=〔A/(m×V/250×1000)〕×100
式中:X--样品中还原糖的含量(以某种还原糖计),单位 g/100g;
A—碱性酒石酸铜溶液(甲、乙液各半)相当于某种还原糖的质量,单位 mg;
m--样品质量,单位 g;
V--测定时平均消耗样品溶液的体积,单位 ml;
计算结果保留小数点后一位。
注意:
滴定结束,锥形瓶离开热源后,由于空气中氧的氧化,使溶液又重新变蓝,此时不应再滴定。
(二)高锰酸钾滴定法
v 原理 将样液与一定量过量的碱性酒石酸铜溶液反应,还原糖将二价铜还原为氧化亚铜,经过滤,得到氧化亚铜沉淀,加入过量的酸性硫酸铁溶液将其氧化溶解,而三价铁盐被定量地还原为亚铁盐,用高锰酸钾标准溶液滴定所生成的亚铁盐,根据高锰酸钾溶液消耗量可计算出氧化亚铜的量,再从检索表中查出氧化亚铜量相当的还原糖量,即可计算出样品中还原糖含量。
(三)硫酸苯酚法
Ⅰ、原理
糖在浓硫酸作用下,脱水形成的糠醛和羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10-100mg范围内其颜色深浅与糖的含量成正比,且在485nm波长下有最大吸收峰,故可用比色法在此波长下测定。苯酚法可用于甲基化的糖、戊糖和多聚糖的测定,方法简单,灵敏度高,实验时基本不受蛋白质存在的影响,并且产生的颜色稳定160min以上。
多糖在硫酸的作用下先水解成单糖,并迅速脱水生成糖醛衍生物,然后与苯酚生成橙黄色化合物。再以比色法测定。
Ⅱ、试剂
1. 浓硫酸:分析纯,95.5%
2. 80%苯酚:80克苯酚(分析纯重蒸馏试剂)加20克水使之溶解,可置冰箱中避光长期储存。
3. 6%苯酚:临用前以80%苯酚配制。(每次测定均需现配)
4. 标准葡聚糖(Dextran,瑞典Pharmacia),或分析纯葡萄糖。
5. 15%三氯乙酸(15%TCA):15克TCA加85克水使之溶解,可置冰箱中长期储存。
6. 5%三氯乙酸(5%TCA):25克TCA加475克水使之溶解,可置冰箱中长期储存。
7. 6mol/L 氢氧化钠:120克分析纯氢氧化钠溶于500ml水。
8. 6mol/L 盐酸
Ⅲ、操作。
1.制作标准曲线:准确称取标准葡聚糖(或葡萄糖)20mg于500ml容量瓶中,加水至刻度,分别吸取0.4、0.6、0.8、1.0、1.2、1.4、1.6及1.8ml,各以蒸馏水补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却,室温放置20分钟以后于490nm测光密度,以2.0ml水按同样显色操作为空白,横坐标为多糖微克数,纵坐标为光密度值,得标准曲线。
2.样品含量测定:
①取样品1克(湿样)加1ml 15%TCA溶液研磨,再加少许5%TCA溶液研磨,倒上清液于10毫升离心管中,再加少许5%TCA溶液研磨,倒上清液,重复3次。最后一次将残渣一起到入离心管。注意:总的溶液不要超出10毫升。(既不要超出离心管的容量)。
②离心,转速3000转/分钟,共三次。第一次15分钟,取上清液。后两次各5分钟取上清液到25毫升锥形比色管中。最后滤液保持18毫升左右。(测肝胰腺样品时,每次取上清液时应过滤。因为其脂肪含量大容易夹带残渣。)
③水浴,在向比色管中加入2毫升6mol/L 盐酸之后摇匀,在96℃水浴锅中水浴2小时。
④定容取样。水浴后,用流水冷却后加入2毫升6mol/L 氢氧化钠摇匀。定容至25毫升的容量瓶中。吸取0.2 ml的样品液,以蒸馏补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却室温放置20分钟以后于490nm测光密度。每次测定取双样对照。以标准曲线计算多糖含量。
Ⅳ、注意
(1)此法简单、快速、灵敏、重复性好,对每种糖仅制作一条标准曲线,颜色持久。
(2)制作标准线宜用相应的标准多糖,如用葡萄糖,应以校正系数0.9校正μg数。
(3)对杂多糖,分析结果可根据各单糖的组成比及主要组分单糖的标准曲线的校正系数加以校正计算。
(4)测定时根据光密度值确定取样的量。光密度值最好在0.1——0.3之间。比如:小于0.1之下可以考虑取样品时取2克,仍取0.2ml样品液,如大于0.3可以减半取0.1ml的样品液测定。
(四)蒽酮法
Ⅰ、实验原理
糖在浓硫酸作用下,可经脱水反应生成糠醛和羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的测定。
该法的特点是几乎可以测定所有的碳水化合物,不但可以测定戊糖和己糖,而且可以测所有的寡糖类和多糖类,其中包括淀粉、纤维素等(因反应液中的浓硫酸可以把多糖水解成单糖而发生反应。所以,用蒽酮法测出的碳水化合物含量,实际上是溶液中全部可溶性碳水化合物总量。在没有必要细致划分各种碳水化合物的情况下,用蒽酮法可以一次测出总量。此外,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅。故测定糖的混合物时,常因不同糖类的比例不同造成误差,但测定单一糖类时,则可避免此种误差。
Ⅱ、试剂:
蒽酮试剂,0.20 g蒽酮溶入100 mL 95%浓硫酸中,冰箱保存;
Ⅲ、方法:
样品2.0 mL加5.0 mL蒽酮试剂,混匀,然后水浴煮沸10 min,取出冷却至室温,在620 nm处测定其吸光度,根据标准曲线计算水样中糖的浓度。(标线以葡萄糖为标样)