邊長多少厘米正方形面積
Ⅰ 邊長是1厘米的正方形,面積是多少面積是1平方米的正方形邊長是多少
邊長是1厘米的正方形,面積是:1×1=1(平方厘米)。面積是1平方米的正方形邊長是:1米。
Ⅱ 邊長是多少厘米的正方形它的面積是一平方米
一平方米換算成厘米的單位就是10000平方厘米,所以邊長應該是邊長為100厘米的正方形
PS:1米=100厘米,同時平方,就是1平方米=10000平方厘米
Ⅲ 一個正方形面積20平方厘米,它的邊長是多少厘米
20=2√5*2√5,正方形邊長是2√5厘米。
面積(外文名:area)是一個用作表示一個曲面或平面圖形所佔范圍的量,可看成是長度(一維度量)及體積(三維度量)的二維類比,對三維立體圖形而言,圖形的邊界的面積稱為表面積。
正方形是指四條邊都相等、四個角都是直角的四邊形。
它的兩組對邊分別平行,四條邊都相等,四個角都是90°;對角線互相垂直、平分且相等,每條對角線都平分一組對角,是矩形的特殊形式,也是菱形的特殊形式。
Ⅳ 正方形的 面積是100c㎡ 周長和邊長分別是多少厘米
解:由題可知:
正方形的面積公式:S=邊長×邊長
即:100=10×10,所以正方形的邊長是10cm。
周長C=4×10=40cm
答:正方形的周長是40cm,邊長是10cm。
解析:這是考察學生正方形的面積公式和周長公式。
S=邊長的平方
C=4×邊長(四個相等的邊長相加)
所以在學習的過程中注意對各種數學公式的記憶,這樣有助於我們對公式的應用和學習。
Ⅳ 邊長是1厘米的正方形,它的面積是多少
邊長是1厘米的正方形,它的面積是1cm²,具體分析如下:
若a為正方形的邊長,v為正方形的對角線,S為正方形的面積,C為正方形的周長,則:
(5)邊長多少厘米正方形面積擴展閱讀:
正方形性質:
1、四個角都是90°,內角和為360°;
2、對角線互相垂直;對角線相等且互相平分;每條對角線平分一組對角;
3、既是中心對稱圖形,又是軸對稱圖形;
4、正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,對角線與邊的夾角是45°;正方形的兩條對角線把正方形分成四個全等的等腰直角三角形;
5、 正方形是特殊的矩形,正方形是特殊的菱形。
參考資料來源:網路-正方形
Ⅵ 面積是40平方厘米的正方形,求邊長多少厘米
邊長約為6.32厘米。
解:設該正方形的邊長為a,面積為S。
因為,正方形面積S是40平方厘米
所以,S=a*a=40(平方厘米)
a=√40
=2√10
=2*3.162
=6.324(厘米)
答:該正方形的邊長約為6.324厘米。
正方形的判定定理
1、對角線相等的菱形是正方形。
2、有一個角為直角的菱形是正方形。
3、對角線互相垂直的矩形是正方形。
4、一組鄰邊相等的矩形是正方形。
5、一組鄰邊相等且有一個角是直角的平行四邊形是正方形。
6、對角線互相垂直且相等的平行四邊形是正方形。
7、對角線相等且互相垂直平分的四邊形是正方形。
Ⅶ 邊長為多少的正方形,面積是一平方厘米。
邊長為1厘米的正方形,面積是一平方厘米
Ⅷ 一個正方形的面積是12平方厘米,它的邊長是多少厘米
邊長是2√3厘米。
解答過程如下:
(1)設這個正方形的邊長為x厘米。
(2)根據正方形的面積公式:面積=邊長×邊長,可得:面積=x²。
(3)再根據一個正方形的面積是12平方厘米,可得:x²=12。
(4)x²=12是一個元二次方程,兩邊同時開平方得x=±2√3。又因為邊長是大於0的,所以x=2√3。
(8)邊長多少厘米正方形面積擴展閱讀:
在實數范圍內,任一實數的奇數次方根有且僅有一個,例如8的3次方根為2,-8的3次方根為-2 ;正實數的偶數次方根是兩個互為相反數的數,例如16的4次方根為2和-2;負實數不存在偶數次方根;零的任何次方根都是零。
常用幾何圖形的面積公式:
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a×a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2